Holidays are a good time to find the answer to complex mathematical problems using household items, MacGyver-style. One way to find pi (yes, that pi) involves a flat surface, a little twig or pin, and patience.

It's strange that the math MacGyver of the 18th century was called Buffon, but at least the guy was a French count. In the time he spent between punching people out when they made fun of his name he was a naturalist, a mathematician, and an architect of a Monte Carlo method of finding pi. Monte Carlo math is all about using random numbers to find solutions to complex problems. He took a piece of lined paper and dropped a needle on it again and again. By counting the number of times the needle touched the lines on the paper, and calculated the value of pi. Buffon's Needle became a famous proof; one that can be used today.

Buffon's Needle involves a smooth needle or twig of a certain length - say two inches. Take a piece of paper and make vertical lines two inches apart. Then raise the needle and drop it again and again, keeping track of the number of drops and the number of times the needle crosses a line. Either the needle will cross one of the drawn lines, or it will fall in such a way that it only touches an unlined panel. You can get an approximate value for pi by doubling the number of total drops and dividing it by the number of drops in which the needled crossed a line.

Sounds like bullcrap, right? Well, look at it this way. How would you find the probability of total drops to drops with line crossings? Just divide total falls by the number of falls with line crosses, right? Well that's one half of the equation, so we're almost there. To get all the way there we just need to relate the probability of line crossings to pi.